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Abstract 
This article presents a method for estimating the variance of the firm or enterprise value distribution by 
incorporating temporal dependencies in cash flows using ARMA models. The analysis highlights the im-
portance of considering these dependencies, as neglecting them can lead to a significant increase in 
variance and subsequent erroneous decision-making. By utilizing ARMA models, decision-makers can 
obtain a more accurate assessment of the underlying risks and make informed investment decisions 
based on a comprehensive understanding of the firm's value distribution. The proposed method provides 
valuable insights for evaluating the uncertainty associated with future cash flows and enhances the accu-
racy of investment decision processes. 

Keywords:  firm valuation, time series analysis, autocorrelation, investment decision-making, risk man-
agement in business. 

1. Introduction 
This paper introduces an innovative approach to advancing stochastic enterprise valuation through the 
integration of Autoregressive Moving Average (ARMA) models. The analysis underscores the pivotal role 
of temporal dependencies in cash flows and illustrates the potential repercussions of disregarding them 
in decision-making processes. Employing ARMA models enables decision-makers to attain a more pre-
cise estimation of the variance in the firm's value distribution, offering valuable insights for enhanced risk 
assessment. Commencing with an overview of the foundational principles of stochastic enterprise valua-
tion, the paper acknowledges the uncertainties linked to future cash flows. The Discounted Cash Flow 
(DCF) method is examined, treating cash flows as random variables to ascertain the distribution of the 
firm's value. The significance of accounting for autocorrelation in influencing factors is emphasized, 
demonstrated through a mathematical representation of the valuation process. 
The paper delves into two scenarios: one with non-autocorrelated cash flows and another with autocor-
related cash flows. The latter involves the incorporation of ARMA models, specifically AR(1), MA(1), and 
ARMA(1,1) processes, to realistically address temporal dependencies1. Formulas are presented for cal-
culating the expected value and variance of the enterprise value under these different models, highlighting 
the impact of autocorrelation on risk assessment. 
Tables and figures illustrate the variance multipliers, accentuating the underestimation of variance in the 
presence of autocorrelation. Practical considerations for estimating parameters and the potential conse-
quences of assuming independence or non-correlation are discussed. In conclusion, the paper advocates 
for a stochastic perspective in firm valuation, particularly in estimating the value of a company under 
uncertainty. The proposed method using ARMA models contributes to a more accurate risk assessment, 
preventing the underestimation of variance that may lead to flawed investment decisions. The findings 
underscore the importance of incorporating temporal dependencies for a robust evaluation of the uncer-
tainty associated with future cash flows, ultimately facilitating informed decision-making in investment 
scenarios. 

 
1 For an in-depth exploration of specifying dependencies in stochastic firm valuation and the introduction of key concepts, refer 
to, for instance, Jöckel and Pflaumer (1981b), where a foundational understanding was extensively discussed. 
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While subjectively specifying correct dependencies may be challenging, the paper notes that long time 
series data can aid in estimating dependencies through statistical methods. 
Stochastic enterprise or firm evaluation estimates the value of a company by considering uncertainties 
and risks associated with future cash flows (see, e.g., [1] or [5]). It models future profits as random varia-
bles following a probability distribution. The firm's value is then calculated based on the expected present 
value of these cash flows, accounting for unpredictable market conditions and other factors. Decision-
making under uncertainty has become crucial in firm valuation, as future results are significant but un-
known2. Stochastic firm valuation incorporates statistical distributions to address uncertainties, enabling 
a more comprehensive analysis. The discounted cash flow (DCF) method, which sums discounted future 
cash flows, is commonly used. By treating cash flows as random variables, the distribution of the firm's 
value can be determined, aiding decision-makers in aligning with their risk attitudes. Neglecting autocor-
relation in influencing factors carries the risk of making flawed decisions, emphasizing the importance of 
its consideration. The following formula provides a mathematical representation of the valuation process3: 

 with    = firm value gt = free cash flow or free cash flow to firm (FCF, FCFF)  

discounting factor  i =  interest rate    period 

2. Distribution of Enterprise Value with Non-Autocorrelated Cash Flows 
The objective is to value a company. The valuator is required to make estimates of the future expected 
cash flows which can be subjective or objective in nature but share the characteristic of being uncertain 
or subject to errors. To account for this, the relevant returns g at time t: 1, 2, ...,  are represented as:  

   with      where , the mean function, reflects the 

deterministic part, and ut represents the stochastic part of the earnings. Assuming infinite lifespan, the 
enterprise value is given by:   if existing. If the stochastic part of the earnings stream is non-

trivial, i.e., , the question arises: what is the probability that the random variable w falls within 
a given interval . To calculate the probability  distributional assumptions about the 
disturbance variable ut are required. The simplest case is that of normal distribution,  
 for t=1,2,…  This implies that the enterprise value w follows a normal distribution with the expected 

value:   (if the series converges) and the variance:    .  The probability 

that w lies between a and b is given by:  

. 

where  represents the distribution function of the standard normal distribution.  

 
2 See also risk analysis in capital budgeting or investment appraisal (Pflaumer, 2017, Savvides,  2008, Vose, 1997, Jöckel and 

Pflaumer,  1980 and 1981a.   
3 For the calculation of cash flows (FCF or FCFF) and the determination of the appropriate discount rate, see   Damadoran, 

2006, Hitchner, 2017 or Fazzini, 2018. 
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For small interest rates i, the above equation is also approximately valid for arbitrarily independent iden-
tically distributed ut (see [7], [8]). The assumption of normal distribution for the residuals should be critically 
assessed. However, this assumption is not as restrictive as one might initially suspect.  The normal distri-
bution is a suitable mathematical model for many phenomena encountered in reality, assuming that nu-
merous influencing components act independently and additively. Since the residuals are indeed influ-
enced by numerous factors, both internal and external to the company, and in many cases are more or 
less independent, it is not excluded that the normal distribution is an appropriate distributional law in the 
present case. Even if a different distributional law is assumed for the disturbance variables, it does not 
affect the expected value and variance of the distribution of enterprise value. These parameters are inde-
pendent of the residual distributions. Regarding the mean function , representing the systematic part 
of the surplus, it is assumed that it can be adequately approximated by a known class of functions of time 
f1(t), f2(t), ..., fn(t):   for t= 1,2,…. 

Table 1 provides examples of different mean functions and the corresponding expected values for enter-
prise value. A generalization can be achieved when the variable explaining the earnings g is represented 
by the mean function . The earnings stream at time t is obtained as: for t=1,2,… with 

 if a linear regression model is assumed. The regressors x are influencing factors 
that determine the relevant earnings g, and they can be of both operational and macroeconomic nature. 
Interdependencies between the variables can be accounted for by constructing simultaneous econometric 
models. Assuming that the parameters βi are stable, the enterprise value could be determined if the values 
of all regressors or all predetermined variables were known. However, the key challenge lies in the deter-
mination of the predetermined variables. This problem has been shifted and, in general, made more diffi-
cult. Instead of predicting one variable, namely the earnings g, one now needs to forecast k variables, 
which is certainly not easier than predicting earnings. For practical applications, it is typically assumed 
that the mean function is either a simple function of time or even constant. 
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Table 1: Examples of Mean Functions of Time 

Mean function        for t=1,2,… Expectation Ew 

1. Constant function    

2. Linear Trend   

3. Geometric Trend   

4. Periodic Function  
 

5. Saturation Curve 
  

3.  Distribution of Enterprise Value with Autocorrelated Cash Flows 
The previous explanations assume the stochastic independence of relevant cash flows. From a practical 
perspective, assuming independent identical distributions - even more so than assuming normal distribu-
tion - is too restrictive. In reality, economic variables are dependent random variables. This means that, 
under the assumption of normal distribution, the covariance or correlation between cash flows in different 
periods is nonzero. 
A first step towards incorporating this temporal dependence into enterprise valuation and achieving a 
more practical solution is to assume a stationary stochastic process for the disturbance variable ut in the 
form of an ARMA (p, q) process:  

The first part of the process is referred to as the autoregressive (AR) component, and the second part as 
the Moving Average (MA) component. Here, and  denote the parameters of the process, and  rep-
resents the disturbances assumed to be independent, normally distributed random variables4.  
The model assumptions made for ut allow us to consider a large class of models. To avoid an excessively 
large number of parameters that need to be estimated, which would render the procedure impractical, 
three simple examples of different processes ut are examined. These include the autoregressive process 
of order one, AR(1), the Moving Average process of order q, MA(q), and the mixed process ARMA(1,1). 
In the presence of a Moving Average process of order one, the disturbance process depends on the 
disturbance variable  and the disturbance variable of the previous period єt-1. This means that the 

 
4 Details of ARMA and ARIMA modeling can be found, e.g., in Chatfield, 2004; Jöckel and Pflaumer, 2022 used these models 
to analyze and forecast mortality and excess mortality during the Corona pandemic; in  Jöckel and Pflaumer, 1981c,  a notable 
early application of the Box-Jenkins method in German scientific literature, monthly gold prices are forecast.  
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disturbance has an impact exactly one period later. Specifically, for example, a parity change5, assumed 
to have a stochastic effect, influences the dependent variable in the period it occurs and in the subsequent 
period. A disadvantage of using a higher-order Moving Average process to capture temporal dependen-
cies is that it may require specifying or estimating a large number of parameters. On the other hand, 
disturbance processes with the aftereffects of disturbance variables in one period affecting the disturb-
ance variables in all subsequent periods can be represented by autoregressive processes. The auto-
regressive process of order one   can be represented as an infinite Moving 
Average process, where the influence of a disturbance diminishes over time 

 It is important to note that only a single parameter, , needs to be 
estimated, and all intertemporal covariances are nonzero. To model the disturbance process as realisti-
cally as possible, one cannot assume that the aftereffects of a disturbance decrease exponentially imme-
diately, as the autoregressive process of order one assumes. A solution is to combine the two types of 
disturbance processes. This has the advantage of being able to weight delays of some periods using a 
Moving Average process and, at the same time, taking into account the less significant dependencies of 
the remaining periods through an autoregressive process with few parameters to be specified. 

The ARMA (1,1) process        (1) 

emphasizes the significance of the aftereffects of one period without neglecting the remaining depend-
encies. Now, each process of the form (1) can be represented as:  with certain  (k: 0, 1, 

2, ...) and stochastically independent -distributed  (t: 0, is called the Mov-
ing Average representation of (1). Using (2), the expected value and covariance function of ut can be 
calculated. It holds that:  

, ,   

With the help of these formulas, the distribution of the enterprise value for a general process of the form 
(2) can be derived by some calculus. The result is a normal distribution with the parameters 

   and    . The variance of the enterprise value depends 

not only on the variance of the disturbance process but also on its covariances. Neglecting the temporal 
dependence in performance indicators can lead to a significant underestimation of the variance of the 
enterprise value, particularly in the case of positive autocorrelation - in economic variables, positive auto-
correlation is more likely than negative autocorrelation. The extent of underestimation depends, as clearly 
shown in Table 2, on the specific residual process and its parameters.  
The numbers in the cells of Table 3, which we want to refer to as risk factors or variance multipliers, reflect 
the ratio of variances of the distributions of firm values under alternative assumptions about the parame-
ters of the disturbance processes and interest rates. They are derived from Table 2. The reference value 
is the variance of the firm value under the assumption of temporal independence. The temporal depend-
encies are represented in the variance multipliers in the first row of Table 3 by an AR(1) process, in the 
first column by an MA(1) process, and in the remaining cells by an ARMA(1,1) process. If the interest rate 

 
5 Parity change in time series analysis refers to a shift or alteration in the relationship between variables over time, and it is 
crucial to detect and account for it to ensure accurate modeling and forecasting. 
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is 20% and the underlying disturbance process is an ARMA(1,1) model with  and , the 
resulting variance multiplier is 7.29. Failure to consider this dependence in the profits would have led to 
an underestimation of the variance of the firm value by a factor of 7.29. The variance multipliers decrease 
as interest rates increase. Similar to how the expected value decreases with increasing interest rates, the 
same is true for the variance. 

Table 2:  Expected Values and Variances of the Enterprise value for different Models 

Disturbance Process Expectation  Variance 

White Noise  
  

MA(1) Process  
  

AR(1) Process  
  

ARMA(1,1) Process 

 

  

with  

Since, for practical reasons (often due to sufficiently long time series required for estimating ARIMA mod-
els), it is almost impossible to adequately determine  and , we often assume independence or non-
correlation. However, this carries the risk of underestimating the investment risk. As evident from the 
tables and the plots in Figs. 1 and 2, the risk primarily depends on  and to a lesser extent on , making 
it reasonable to focus solely on the subjective estimation of . In most cases, it is impossible to subjec-
tively specify correct dependencies. Practical solutions involve calculating the firm value assuming inde-
pendence and weak autocorrelation (phi = 0.3), medium autocorrelation (phi = 0.5), or strong autocorre-
lation (phi = 0.8) of the influencing factors to obtain a range of resulting variances. 
 
  

0.9f = 0.5q =

t tu e=
1

t
t

t
E w v µ

¥

=

=å
2

021
v
v
g

-

1 1t ttu e q e -= +

1

t
t

t
E w v µ

¥

=

=å
2

1
02 2

1

1 2
1 1
v
v

qg
q

æ ö
+ç ÷- +è ø

1 1 tt tu uf e-= +

1

t
t

t
E w v µ

¥

=

=å
2

1
02

1

1
1 1

vv
v v

fg
f

æ ö+
ç ÷- -è ø

1 11 1 t tt tu uf e q e --= + +
1

t
t

t
E w v µ

¥

=

=å
2

2
0 12

1

11 2 2
1 1
v v v
v v
g a af

f
æ ö
+ +ç ÷- -è ø

( )( )1 1 1 1
2
1 1 1

1
1 2
fq f q

a
q fq

+ +
=

+ +

f q

f q
f



  7 

Table 3: Variance multipliers for an interest rate of 20% 

\  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 1 1.18 1.4 1.67 2 2.43 3 3.8 5 7 11 
0.1 1.17 1.36 1.58 1.86 2.19 2.62 3.19 3.98 5.15 7.11 11 
0.2 1.32 1.52 1.74 2.02 2.35 2.77 3.33 4.11 5.26 7.18 11 
0.3 1.46 1.65 1.88 2.14 2.47 2.89 3.44 4.21 5.34 7.23 11 
0.4 1.57 1.76 1.98 2.24 2.57 2.98 3.52 4.27 5.4 7.27 11 
0.5 1.67 1.85 2.06 2.32 2.64 3.04 3.58 4.32 5.44 7.29 11 
0.6 1.74 1.91 2.12 2.37 2.68 3.08 3.62 4.36 5.47 7.31 11 
0.7 1.78 1.95 2.16 2.41 2.72 3.11 3.64 4.38 5.48 7.32 11 
0.8 1.81 1.98 2.18 2.43 2.74 3.13 3.66 4.39 5.49 7.33 11 
0.9 1.83 2 2.2 2.44 2.75 3.14 3.66 4.4 5.5 7.33 11 

1 1.83 2 2.2 2.44 2.75 3.14 3.66 4.4 5.5 7.33 11 

This multiplier indicates that the variance is underestimated by a factor of 7.29, e.g., if temporal depend-
encies are not taken into account. As a decision-maker, one should calculate the loss probabilities for 
each variance assumption. If the loss probability remains low even with high autocorrelation (phi = 0.8), 
then the enterprise value is justifiable from the buyer's perspective. Conversely, from the seller's perspec-
tive, one should calculate the probabilities of the enterprise value being greater than, for example, the 
0.95 quantile. If the probability is high, it indicates that the demanded selling price of the enterprise may 
have been set too low. 

 
Figure 1: Surface Plot of Risk Factors (Variance Multipli-

ers) with Interest Rate 20% (p=0.2) 

 
Figure 2: Risk Factors (Variance Multipliers) as a Func-
tion of phi (theta=0) and Interest Rates p (0.1, 0.2, 0.3) 
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